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ABSTRACT

We derive a system of diagnostic equations for the velocity field, or “wind laws,” for a barotropic primi-
tive-equation model of large-scale atmospheric flow. The derivation is mathematically exact and does not
involve any physical assumptions, such as nondivergence or vanishing of derivatives of the divergence,
which are not-already present in the prognostic equations. Therefore, initial states computed by solving
these diagnostic equations should be compatible with the type of motion described by the prognostic equa-
tions of the model, and should not generate initialization shocks when inserted into the prognostic model.

Based on the diagnostic system obtained, we are able to give precise meaning to the question whether the
wind field is determined by the mass field and by its time history. The answer to this important question is
affirmative, in the precise formulation we provide.

The diagnostic system corresponding to the chosen barotroplc model is a generalization of the classxcal
balance equation. The ellipticity condition for this system is derived and given a physical interpretation.
Numerical solutions of the diagnostic system are exhibited, including cases in-which the system is of mixed
elliptic-hyperbolic type.

Such diagnostic systems can be obtained for other primitive equation models. They are valid for all
atmospheric scales and regions for which the prognostic models from which they are derived bold. Some
problems concerning the possibility of implementing such a system in operational numerical weather pre-
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diction are discussed.

1. Introduction

Efforts to solve the initialization problem have pro-
ceeded mainly along two lines: 1) static initialization,
and 2) dynamic initialization (Bengtsson, 1975). Both
are based on the theory of geostrophic adjustment and
try to apply it in different ways. Static initialization
attempts to derive diagnostic relations (i.e., relations
free of time derivatives) among variables; these rela-
tions are compatible with prognostic systems the solu-
tions of which do not contain components of the
inertia-gravity wave (IGW) type. Initial states ob-
tained from these relations should therefore have cor-
responded to a balanced state, or a state of the system
after adjustment (Hinkelmann, 1951). It turned out,
however, that using such initial states did not prevent
the rapid growth of unwanted components of solutions
to primitive-equation systems (Nitta and Hovermale,
1969; Morel ef al., 1971), which constitutes the initiali-
zation shock. This incompatibility effect could be ex-
plained by the fact that quasigeostrophic equations

! Current affiliation: National Center for Atmospheric Re-
search, Boulder, Colo. 80307.

obtain from the primitive ones by a singular, rather
than by a regular perturbation. The incompatibility
effect has been studied recently in a filtered barotropic
model by Blumen (1976a, b).

Dynamic initialization attempts to use the dispersive
and dissipative properties of the numerical primitive-
equation models themselves to reduce the amplitude
of spurious IGW-type phenomena in the model, i.e., let
the model simulate the geostrophic adjustment process
in the atmosphere (Nitta and Hovermale, 1969). In such
a procedure, the model is furnished additional data as
they become available in order to compensate for the
incompleteness of the initial data—the model is up-
dated (Charney et al., 1969). The hope is that, after a
sufficient period of updating, the model’s solution will
closely approximate the state which it would have at-
tained if given the proper set of complete initial data.

The difficulties encountered with this technique and
variations thereof (Morel et al., 1971; Williamson and
Kasahara, 1971) were the following: 1) decrease of the
initial rms error in the solution to a nonzero asymptotic
value, 2) achievement of this decrease within periods
not shorter than 2 days, and 3) slower decrease or actual
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increase of the rms error when real, rather than simu-
lated, data were used. These difficulties are connected
with the nonlinearity of the system and with the change
of the solution during the updating process.

We propose to overcome these difficulties by reducing
the updating interval to zero length, i.e., by obtaining
. the initial state as the solution of a generalized diag-

nostic system which includes time derivatives of those
variables that are assumed to be known completely and
accurately; in mid-latitudes it is reasonable to assume
that this is the case for the mass field. This system is
derived from the corresponding prognostic system by
exact mathematical manipulations, without neglecting
any terms which may be small, but have an entirely
non-negligible effect on the behavior of the solution to
the prognostic system. The compatibility of the diag-
nostic system with the prognostic system should pre-
vent spurious growth of IGW-type phenomena (the
initialization shock).

Such a diagnostic system was derived first for a
linear barotropic primitive-equation model in Ghil
(1973, 1975a, b); a complete analysis of this linear
diagnostic system and of the effect of using its solution
as an initial state for the corresponding linear prog-
nostic system was given. Furthermore, a diagnostic
system compatible with a nonlinear baroclinic primitive-
equation model in pressure coordinates was derived in
Ghil (1975b). Similar derivations can be given in 2
coordinates and in ¢ coordinates.

We shall present here a nonlinear barotropic case of
such a compatible diagnostic system, or balance system.
It is of interest, however, to point out that the diag-
nostic system we present has exactly the same form as
the one that obtains for a baroclinic primitive-equation
model in isentropic coordinates (Ghil, 1975b).

The article is organized in the following way : Section
2 contains the derivation of the diagnostic system com-

_patible with the nonlinear shallow-fluid equations. In
it the ellipticity condition for this system is derived and
given a physical interpretation. Connections with the
classical balance equation and its ellipticity condition
are pointed out. Section 3 presents the derivation of a
second-order system which is equivalent to the first-
order system in Section 2, but which is easier to solve
numerically. It is shown that the domains of ellipticity
of the two systems are closely related. Section 4 de-
scribes the numerical method used to solve the second-
order system of the previous section, and contains the
results for a number of test cases. The test cases include
solutions for which the system is of mixed elliptic-
hyperbolic type, as well as cases with non-zero diver-
gence. Section 5 contains the summary and conclusions,
as well as some comments on the possibility of applying
the approach we present and the numerical methods
we developed in an operational context.
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2. A barotropic balance system

We consider the nonlinear shallow-fluid model gov-
erned by the equations

setune vyt — fo=0, (1a)
v+uv.+vv,+éy+ fu=0, (1b)
¢t+u¢fc+”¢y+¢(uz+”v) =0. (1c)

Here u, v are the velocity components in the x, y direc-
tions, respectively, f is the Coriolis parameter and ¢
is the geopotential of the free surface of the fluid.

We want to derive two equations for the velocity
components %, v in which their time derivatives do not
appear, although ¢, ¢,; may be present. The assump-
tion is that ¢ is known together with its time deriva- .
tives. The plausibility of this assumption will be dis-
cussed in the last section.

For convenience, we introduce the notations 6 =u,+7,
for the divergence, d/dt=93/3t+ud/dx+v3/dy for the
material derivative, and ®=log ¢ (¢>0). Differentiat-
ing (1a) with respectto », (1b) with respect to y, and
adding, we obtain the familiar divergence equation,
which we write as p

)
uz2+2“y”z+vy2+f(%y_vz)+fyu+V2¢= —:i_[, (2)

where V2=9%/92%+3%/3y* is the Laplacian. Eq. (1¢)
can be rewritten in our notation as §= — (d®/dt), and
hence we also have

du dv
z_—+q)y“"- (3>
dit dt .

s d®, d¥,

—_— =}y

dt dt dt

d®,
+r—+@
dt

Expressing du/dt and dv/dt with the aid of (1a) and
(1b), Eq. (3) becomes

aé
—— Jo—¢2)—@,(futoy)

d®, dd.

+—+tu (3
di

—+y—.
di dt

Combining (3’) with (2) we obtain a diagnostic equa-
tion of the desired type, to which we can add (1c) to
obtain the balance system

Uptv,= —DPu—P0—P, (4a)
w22+ 2004024 f(uy—v.) = — fyut f(P0—yu)
d®, d¥, d¥, ¢ 9,2
et V%, (4D)

dt dt at ]

This is the diagnostic system compatible with the
nonlinear shallow-fluid equations (1). Using as initial
data for (1) the known ¢ and the u, v obtained by
solving (4) should yield a solution of (1) which is free
of initialization shock. We further notice that no re-
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strictions on scales of motion limit the validity of (4);
this is an important distinction from the classical
balance equation. In particular, system (4) reduces to
the balance equation when §=0=d5/d¢ (Ghil, 1975b).

In order to solve (4) it is important first to determine
its mathematical type. This is equivalent to determin-
ing the existence and number of real characteristics of
the system. If the system has no real characteristics
at all it is elliptic and if it has the maximum possible
number of distinct real characteristics it is Ayperbolic;
the maximum possible number of characteristics is
simply the degree of the characteristic equation, which
in the case at hand is two. If all characteristics are real,
but some coincide, we shall call the system parabolic.

The generalization of the concept of characteristics to
the nonlinear system (4) can proceed either from the
concept applied to a simple nonlinear equation (Courant
and Hilbert, 1962, pp. 418-421) or from that of the
characteristics of a quasi-linear system (ibid., pp. 170~
173, 424-427). To derive the appropriate characteristic
equation, we first rewrite (4) in the form

D(szvy) = d(x:yyv)) (sa)
E(VI?Vﬂ)ze(x7y;V)) (Sb)

where V is the velocity vector, V= (u,), and V,, V,
are its first derivatives, V.= (u,,1,), V,= (4,,2,); D and
E are the left-hand sides, and d, e, the corresponding
right-hand sides of (4a) and (4b), respectively. Further-
more, we let

¥ (x,y) = constant

be the equation of a characteristic of system (5) in
implicit form.

In the notation introduced above, the characteristic
equation of (5), i.e., the equation whose solutions are
the characteristics of (5), is simply (Ghil, 1975b)

-

Dy, Eu, D.,E.,

Y07 el @
D, E., D,, E,,
After some computations, (6) can be written as

(f =2u,)¥ 242 (u— v, ) ¥ ¥y + (f+20,)¥,2=0.  (6")

That system (4) be elliptic is equivalent to (6) not
having real solutions ¥./¥, (or ¥,/¥,); that is, it is
equivalent to the condition that the discriminant ©

D= (f~2u,) (f+20.) — (4a—2,)* (M
be positive. The ellipticity condition for (4) is therefore
D>0, )

Le., system (4) is elliptic if (8) holds and it is hyperbolic
if the opposite inequality, <0, holds. But, expanding
and rearranging (7), we can put it into the form

D= f24-d2—2e, 1

where we used

—2u,0,= (u2+v,2) — (u+v,)%
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This finally yields the ellipticity condition for (4) as
Hd2—2e>0, (8"

which generalizes the corresponding condition for the
classical balance equation (Ghil, 1975b).

A further transformation of (7) yields an interesting
physical interpretation of the ellipticity condition.
Using (4a, b) to expand the right-hand side of (7')
and regrouping terms, we obtain

D= (ftvo—u,) —[(te—v)"+ (uy+22)"]. (9

In this form, we easily recognize that D is just the
difference between the square of the absolute vorticity
and that of the total deformation of the flow field V.
Both of these quantities are invariant under trans-
formations of coordinates and they play a role in
synoptic diagnosis. They are discussed in a somewhat
similar context by Petterssen (1953). We believe, how-
ever, that (9) and its physical interpretation are new.

Form (7’) is important, since it stresses that ©
depends directly only on % and » themselves, and not
on their derivatives. The situation is quite similar to
that of the classical balance equation, to which (4)
reduces when 6=d5/dt=0. Indeed, the ellipticity con-
dition for the classical balance equation also depends
only on first and not on second derivatives of its solu-
tion, i.e., on velocity components and not on their
derivatives; in both cases the highest derivatives of
the problem are not present in the ellipticity condition.
The dependence of D on « and v only is very useful in
working with real data and with numerical solutions,
since a function can be approximated with greater
accuracy than its derivatives, whether it be from ob-
servations or from computations. 4

The analogy with the classical balance equation and
a scale analysis of (7’) leads us to expect that atmo-
spheric data with <0 might occur (Ghil, 1975b).
Therefore, the solvability of (4) in regions containing
hyperbolic (< 0) as well as elliptic (D>0) subdomains
is crucial, both theoretically and practically.

Theoretically, we would like to know whether the
mass field and its time history do indeed determine the
wind field for fully nonlinear systems. The conjecture
that this is so was put forward by Charney et al.
(1969) to justify their updating approach to dynamic
initialization and four-dimensional data assimilation.
The partial success of updating did not provide con-
clusive evidence either to prove or to disprove this con-
jecture. Assuming that this theoretical question is
settled in the affirmative, we would like to verify
practically whether solving system (4) directly is a
better approach to initialization than updating.

3. An equivalent second-order system

A semi-direct, rather than iterative, method to solve
system (4) itself appears elsewhere (Ghil and Balgovind,
1977). In this article we shall present solutions of (4)
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obtained by using a simple iterative numerical tech-
nique to solve a second-order system derived from and
equivalent to (4). An approach similar to the one
described here is being pursued independently by A.
Sundstrom (personal communication, 1976).

The starting point of the following derivation was
the observation that the classical balance equation

szll/—}-Z (‘/’zz¢uu“‘/’zu2) +fy‘/’1/= V2¢;

with ¢ the streamfunction, is a close approximation to
a Poisson equation for small Rossby number. That is,
when the Rossby number and hence the nonlinear
terms of (10)-are small, the left-hand side of the equa-
tion is dominated by the Laplacian V). But Poisson
equations are readily solved by iterative methods.
Hence it was natural to attempt to put (4) into a form
similar to (10), without assuming nondivergence, §=0;
it is nondivergence which entails the existence of the
streamfunction ¢ appearing in (10), with u=—y,,
1=y,. '

A form similar to (10) is easily achieved by cross-
differentiation of (4). Using the notation d, ¢ of (5) for
the right-hand sides of (4a) and (4b), we immediately
obtain '

IVu+ (u242uv.+v,2) y= fd.+ey,
fVeo— (u;*’+2u,,v,+v,,2),= fd,—e,

(10)

(11a)
(11b)

where we took f=constant for simplicity. Not only
is the Laplacian of %, v put in evidence in this form,
but (11a, b) are actually gquasi-linear equations.
That is, they are linear in the highest derivatives
WUzzy Uzy, - - -5 Vyy, rather than fully nonlinear, as was
(4b). This immediately suggests a simple iterative

PO 20,8 A+ (J+20,) 0,2
0= det(

—2(%, Y A0 Y,) ¥,

which becomes, after some algebraic manipulations,

0= (f—2u) ¥+ (f+20) 0 2 (f 0o —u, )W 2T, 2

+2(0— 1) T X, (T 2T, (14)

The connection between (14) and (6’) is not im-
mediately apparent. To put a connection in evidence
we modify (11) slightly by using (4a) to eliminate the
mixed derivatives uy, 9., ; i.e., we substitute into (11)
the expressions :

Upy=0y—Tyy, Vpy=0Cz~Uzs. (15)

After substituting (15), system (11) becomes
AttyetBuyy+Copy=e,+Ads—2udy,  (162)
Cthzs+Av2e+Boyy= —e,+2v,d.+Bdy, (16b)
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method for solving (11); we postpone the description
of this numerical method for the next section.

First we have to ask in what sense systems (11) and
(4) are equivalent. Clearly, solutions of (4) which are
sufficiently differentiable will also be solutions of (11).
Conversely, however, (11) might have some solutions
which are not also solutions of (4). In particular, since
(11) is of higher order than (4), it requires more bound-
ary conditions to determine its solutions uniquely. A
judicious choice of the supplementary boundary con-
ditions should ensure that there is a one-to-one corre-
spondence between solutions of (11) and of (4).

The next question that arises about system (11)
concerns its type and the relationship of its type to
that of (4). Some readers could find the following dis-
cussion rather technical and might want to proceed
directly to its conclusion, which is given immediately
after Eq. (21).

For convenience of notation, let (11) be written
symbolically as

G(V",V)=¢(V'.V), (12a)
H(V"V)=h(V'V), (12b)

where V'=(V,,V,) denotes the first derivatives and
V"= (V.z,Vzy,Vyy) the second derivatives of V= (u,).
In this notation, the characteristic equation of (11) is

G“zz HU:: -
0=detf( 7w ,
G, H,

H,,
¥ )w]. (13)

Gy Hus Guyy
+< ' )\If\lf+< ’
Gv,,, Hvzy G”vu vy

Written out explicitly, Eq. (13) is equivalent to

2(0y ¥ o0, ¥,) T, _>’ 13)
(f—20,) ¥ 2 — 20,9, 0+ f0,2
where we introduced the notations
A=f~2u,, B=f+2, C=2(v,—us). (17)
We now let the abbreviated form of (16) be.
Gi(V' V=g (V,V), (18a)
H(V' V) =k (V,V), (18b)

in the same way in which (12) stands conveniently for
(11) and system (5) stands for system (4). The char-
acteristic equation of (16) is (13), with G and H re-
placed by G; and H;. Carrying out the operations of
partial differentiation, we obtain

AVY,2+4BY,? C¥,2
0= det( )
C¥, 2 A¥ 24 BY,?

=AM+ (24B—C)Y Y2+ B4 (19)
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Clearly, Eq. (19) has four solutions, which are in
general complex. These solutions come in pairs corre-
sponding to the choice of square root for §=¥2/¥,2
(or 1/£=%,2/¥,?). Therefore the solutions will be real
and distinct whenever £>0, and they will be complex
with nonzero imaginary part whenever £¢<0 or { is not
real. A necessary and sufficient condition that system
(16) be elliptic is therefore that the discriminant & of
(19), as an equation for £ (or 1/£), be positive, i.e.,

0< §=442B?— (24 B—C2)?
=C(44B—-C?), (20)

and that £ be positive itself. Recalling the definitions
(17) of 4, B, C, and the expressions (7,7") for D, we
obtain

8=CD. (1)

Thus, finally, Eq. (16) is elliptic whenever (4) is, except
for parabolicity along the lines C?*=4(u,~1v,)?*=0, and
for hyperbolicity where £ is real, but negative. To
summarize, we can say that the domain of ellipticity
of (4) includes that of (16), and possibly exceeds it;
we are not able at this point to make a similar clear-cut
statement for (11).

Having partially clarified the relationship between
systems (11) and (16) on the one hand, and system (4)
on the other, we proceed to describe our test computa-
tions with system (11). Before doing so, we would like
to mention two previous attempts at integrating diag-
nostic equations of mixed type numerically, those of
Fijgrtoft (1962) and Miyakoda and Moyer (1968). We
hope that our contribution is a further step in the
direction of solving this difficult problem.

4. Numerical method and results
a. The method

We wish to solve the second-order system (11) in a
rectangle 0< », y< L, L=6X10°m, which is typical of
a mid-latitude zonal channel, and we take f=constant
=10"* s71. The boundary conditions we chose are to
prescribe # and v on all sides of the rectangle. These
boundary conditions are clearly appropriate for the
elliptic linear problem corresponding to (11). The nu-
merical experiments on which we report seem to indi-
cate that they are suitable for the nonlinear problem
as well, at least as long as the hyperbolic subdomains
do not become too large.

To discretize (11) we introduce a grid with uniform
mesh spacing Ax=Ay=A, L/A=M, and the usual
notation V;;=V(¢A,jA). Derivatives are replaced by
centered differences, e.g., :

V(x+A,9)—V(x—A4,y)=2AV.(x,y),

with similar approximations for V,, V.., V., and V,,.

Introducing these expressions for the derivatives into
(11) results in a system of nonlinear algebraic equations
for V;, 1<4, j< M —1. It is worthwhile to notice that
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writing the equations at grid point (7,7) only involves
V;; from the expressions of V., and V,,, and not from
the first derivatives V., V, or from the mixed deriva-
tives V.,. These equations are now rewritten for the
purpose of solving them iteratively as

(22a)
cuiitdv;=r(uisg,,i16,), (22b)

where a1, a2, 81, B take the values —1, 0, 1, but always
los| 4 ez} 05 |81) +18:1, 1e., V,; is expressed as a
function of the eight neighboring values, V.i1;11,
V.:x1, Vig1,;. The coefficients a, b, ¢, d also depend on
values of V at the neighboring points, but not on V;;;
this is due to the quasi-linear character of system (11)
and to the use of centered differences.

The iterative procedure now consists in choosing an .
initial guess V{? and then defining recursively V{3tV
given V. To formulate the recursion, we write (22)
more concisely as

a b q
PV,';,':R, P=( >, R=( >,
¢ d 4

where P and R depend on values of V at the neighbor-
ing points (ie, j£p8), with &, =0, 1 and a+B=0.
The recursion or iteration is now simply

ati;+0vi;= (Uit ay it ap)s

(23)

P('n,n+l)V1§;l+1)=R(n,n+l); (23"
the notation Pm#tD) R»»+1) means that we sweep
the mesh at each iterative step from left to right and
from bottom to top, using the “new’” values V*LY_,
and the “old” values V{7, ;5. This procedure is some-
times collective successive relaxation (Brandt, 1977). It is
a straightforward generalization of successive relaxa-
tion for a single Poisson equation. Of course, the situa-
tion in which det P =0 should be carefully
avoided, but it was in fact not encountered in the test
cases we studied.

Furthermore, in cases in which the problem was of
mixed type, that is, hyperbolic subdomains were actu-
ally present, it turned out that it was important to
use a continuity method, and start the iterations by
solving a purely elliptic problem first. The simplest
way to achieve that seemed to introduce instead of the
parameter f in (11) the quantity f.=f(1+¢"), so that
f®> f for all n and f™|f as n increases. Using ¢=0.5
guaranteed in all our test cases that the first iteration
corresponded to the solution of an elliptic system and
that for the value of # for which the iterative process
was stopped, f™ was sufficiently close to f so as not to
contribute significantly to discretization error.

The convergence criterion used to stop iteration was

-_— max,—,j| Vi(;.+l)—"vi(?) I <,
m

where V,,=max; ;| V;;] and |W| stands for the Euclid-
ean length of the 2-vector W, W= (wy,wy), ie., |W|2
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=w?+w,% It seems that »=10"? is quite sufficient
for the intended application; using smaller  did not
improve the actual accuracy of the solutions very
much, while necessitating a considerably larger num-
ber of iterations (Ghil and Shkoller, 1976).

b. Test cases

The most general two-dimensional velocity field can
be written as

V=kxwvy+vx, (24)

where k is the unit vector perpendicular to the plane
of the flow, Vv is the two-dimensional gradient
[v=(3/9.,0/3,)], ¥ a streamfunction and X is a
velocity potential. We study solutions of the diagnostic
system (4) which can be represented by (24) with

¥=—(Vo/k) sinkx sinky, X=3)M\22+uy?), (25)

and 2r/k=L=6X10% m. These solutions include in
particular the nondivergent velocity fields discussed by
Paegle and Paegle (1974) for elliptic cases and by Ghil
~and Shkoller (1976) for mixed-type cases; the non-
divergent solutions are characterized by A4-u=0.
Since (4) is nonlinear, its type will depend on the
solution we seek. In other words, we shall be able to
adjust the amount of hyperbolicity, as well as the
divergence, by varying the parameters Vo, A and . -
Using (24) and (25), we obtain

d=u,~+v,=A+4pu=constant, (26a)
#y+v,=0, (26b)
Uy— vy =2kV ¢ coskx cosky+\—p, (26¢)
{=v.—u,=2kV sinkx sinky. (26d)

To exhibit the dependence of the ellipticity criterion
for (4) on Vo, X and u as clearly as possible, we start
with (9), which becomes, using (26b),

D= (fHv.—uy)* — (u—v,)*
= (f+'v:c—uy+uz_7’y) (fHve—uy—uz+v,). 9"

Substitution of Eqgs. (26¢) and (26d) info (9'), and use
of elementary trigonometric identities, yields

+
=4k? Vo2|:f i +cosk (x—y):l
2RV,

=y
x[;};;—cosk(wy)], 27)

0
where we have introduced v, defined as
Y=N—p. (27)

From (27) it is evident that © will be positive for all
(x,y) in our rectangular domain, i.e., for 0< kx, ky< 2,
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only if both the conditions
</, (28a)
=1l
Vo< , (28b)
2k

are satisfied. We shall study only cases for which (28a)
is satisfied; the ratio of ¥, to the critical velocity V.,
where
f=lvl
V*= 3
2k

(29)

is then a measure of the amount of hyperbolicity as-
sociated with a solution of form (24). Specifically, for
v=0,

f .
Vy=—=4775ms}
2k

and this is the critical value corresponding in par-
ticular to those nondivergent solutions for which
A=u=A—u=0.

c. Numencal results

To check the accuracy of the method described in
Section 4a to solve system (11), we had to have a cel-
lection of exact solutions of (11). Substituting V given
by (24) and (25) into the left-hand sides of (11), we
obtain the corresponding right-hand sides of the sys-
tem. The test of the method is then to-reproduce as
accurately as possible the known solution by using the
information provided by the prescribed right-hand
side and boundary conditions.

In the notation of (12), given V, we obtain g, %.as
known functions of x and y:

G(V",V)=g(x.y),
H(V",V')=h(x,y).

Here V", V' are computed by analytic differentiation
from V given by (24) and (25), with certain values of
the parameters Vo, A and y. Then G and H are dis-
cretized as indicated in Section 4a and the discrete
form of (12’) is solved by the algorithm expressed in
Egs. (22) and (23"). We denote the result of this pro-
cedure by Va.

The accuracy of the method can be evaluated by a
suitable measure of the difference V,—V. This differ-
ence is the error of the numerical method. The most
useful and widely used measures, or norms, are the
rms error and the maximum (max) error.

We performed computations with two mesh sizes,
corresponding to M=M,=25 and M=M,=50, ie.,
A=A;=240 km and A=A,=120 km. Actually, we used
M,=49, because of programming considerations, but
will refer in the sequel for simplicity to M»=>50. These
mesh sizes are approximately equal to those currently

{12a’)
(12b")
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TasLE 1. Results of computations for System (11) with the algorithm given by (22) and (23’). The exact solutions are given by (24)
and (25), and depend on the parameters Vo, A and u. The divergence § of the analytical solution is given by (26a), as §=XA-+g, and v is
given by (27'), as y =A—u. The degree of hyperbolicity is expressed by the ratio of the maximum nondivergent velocity V, to the critical
velocity V., where V. is given by (29), and by the relative extent of the subdomains of hyperbolicity . The number of iterations N re-
quired to satisfy our convergence criterion, with =102, is next. The subcolumns headed 10%, refer to an initial guess which differs
by a 10% random error from the exact solution; heading 209, refers to 209, random error in the initial guess, as explained in the text.
Ly(u) and Ly(v) stand for the rms differences between the numerical and the analytical # and v, respectively; these rms differences are
expressed as percentages of the rms norms of « and v themselves. Ay and Av are the actual maximum errors in # and » (m s™1); they
should be compared with V, in the first column. L:(¢) and L, () give the rms error and maximum error in the streamfunction y, as
computed from the numerical solution (u,v) by solving the Poisson equation (30); they are also expressed as percentages of the rms
norm and the maximum norm of y itself. The results seem to indicate that, in spite of the severity of the test cases, a moderate num-
ber of iterations is required and reasonable accuracy is obtained. Furthermore, the results depend very little on the quality of the initial

guess.

8 k%
Vo (X105 (X105  Vy P) N L:(w)[%] L:()[%] Aulm s71] Ay[m s71] L) (%] Lo(¥)[%]
(ms™) s sTH (ms) (%) 10% 20% 109 209 109 20%  10% 20% 109 20% @ 10% 20% = 10% 20%
55 0 "0 47.75 21,92 24 20 5.65 572  5.68 579 560 5.78 544 529 484 515  10.45 10.74
55 2 0 47.75 21,92 25 21 349 352 344 350 549 565 546 5.36 479 508  10.40 10.67
55 5 1 42,97 2896 36 27 149 1.43 217 212 621 583  6.32 599 468 4.84 1052 10.53
54 0 0 47.75  21.92 22 19 520 5.35 523 541 506 530 489 478  4.61 4.95 9.74 10.10
54 2 0 47.75 2192 23 20 3.17 3.24 313 323 495 5.7 492 4.86  4.56 4.87 9.58 10.02
54 s 1 42,97 23.20 29 24 1.30 128  1.89 1.90 4.89 493 510 4.99 441 4.62 9.51 9.75
52 0 0 4775 21.92 18 16 458 4.81 462 4.89  4.19 4.49  3.97 3.98 432 4.70 8.64 9.05
52 2 0 47.75 2192 19 17 271 2.83 269 2.83  4.08 4.37 401 4.02 425 4.61 857 897
52 5 t 42,97  20.96 24 21 1.08 1.08 155 1.61  3.92 4.09 411 4.09  4.02 4.27 8.34 8.61
50 0 0 47.75  21.92 17 15 412 443 417 450 355 3.90  3.36 3.45  4.03 4.47 7.78  8.28
50 2 0 4775 21.92 17 15 2.39 256  2.38 2.56  3.45 3.79  3.38 3.51  4.01 4.42 7.74  8.20
50 5 1 42,97 20.96 20 18 091 094 1.35 142 324 349  3.38 350 379 4.07 7.45 7.78

used in numerical weather prediction on a global and
a regional scale, respectively.

The values of V, used in the computations ranged
up to Vo=>55 m s, which is very high for typical
synoptic-scale winds. The values of X and g used were
such as to produce divergences up to §=A+u=5X10"5
s~!, which are also abnormally high for synoptic-scale
wind fields [cf. Palmén and Newton (1969), Fig. 6.4a
and Table 11.1, for instance].

As an initial guess V© for our computations we used
the correct solution V to which a random perturbation
was added: at each grid point we added to both % and
v a number obtained by sampling a random variable
distributed uniformly between —S and +S. The limit
S of the distribution was given in each case by S=sV,.
For s, we took the values s=s1=0.1, or 109, of VL,
s=59=0.2, or 20%, of Vy, and s=s3=0.3, or 309, of
V. Taking into account the large values of V, we used,
it is clear that S is quite large and exceeds considerably
in all our examples the limitations on measurement
error in wind included in GARP requirements (cf.
Bengtsson, 1975, p. 3), which are 3 m s! in mid-
latitudes and 2 m s in the tropics. It is therefore
reasonable to assume that an initial guess with com-
parable accuracy could be made in operational situa-
tions. We expect to address this question in further
work on this problem.

The most important results of the computations are
summarized in Tables 1 and 2. Some additional results
will be commented upon with reference to those in the
tables.

Both tables are organized as follows. The solution

for which the results are given is identified by V, 6 and
7, given in the first three columns in this order. Note
that 6 and vy define uniquely M and g, and hence X,
while V, defines . The next two columns give the
critical velocity V, and the number of points at which
(4) was hyperbolic for the given solution (Vo,\,u), as a
percentage p of the total number of grid points; the
ratio Vo/V, and the number of hyperbolic points are
measures of the amount of hyperbolicity of the solution.

The other columns in both tables contain information
on the numerical iteration and the results. Each column
is divided into two subcolumns: the one to the left
contains results for M=25 and s=s,. Table 1 differs
from Table 2 in the content of the subcolumns to the
right: Table 1 has results for M =25 and s=s,, while
Table 2 has results for M =350 and s=s;.

The result columns in the tables give N, the number
of iterations to convergence, the rms errors in # and v
in percentages of the corresponding measure of # and v
themselves, the actual maximum error in % and v, and
the rms and max error in ¥, in percentages of its cor-
responding norms. Exact definitions of the rms and
max norms, and of the relative error as a ratio of error
norm to solution norm, are given in Ghil and Balgovind
(1977).

The streamfunction ¢ was computed by solving the
Poisson equation:

VA=¢, (=vs—uy, (30)

subject to the boundary condition ¢ =0. The right-hand
side ¢ of Eq. (30) was computed at each grid point
(4,5) by centered finite differences from the numerical
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solution V, of (11); the equation was then solved
numerically by the standard procedure of successive
overrelaxation, i.e.,

¢:j= —Azg‘ii"' (%) (\b?ill,j+¢:;-—ll+¢?+ 1,j+¢z.1+ 1)» (313«)
'/‘:7-1 =¢inj+w (‘P:J_‘”'j) . (31b)

For w=1 this reduces to ordinary successive relaxation
(sometimes called Gauss-Seidel ‘'or Liebmann relaxa-
tion), but (31) produces faster convergence for 1<w< 2,
We used w=1.8, which is in many cases a good guess
for the optimal value of w (e.g., Forsythe and Wasow,
1960, Section 22).

Table 1 concentrates on the highest values of V, for
which solutions were obtained, 50 m s71< V<55 m s~
These values are indeed quite high compared to typical
synoptic-scale values of 15~30 m s, and it would be
most unusual to obtain even higher values from ob-
servations. Divergence values in this table range up
to §=5X10"% s~!, which should be compared with
typical synoptic-scale values of 1—3X10-5 s=1. Ratios
of Vo/V, range up to 1.28 (for V=55 m s, V,=42.97
m s7') and the percentage extent of hyperbolic sub-
domains ranges up to $=29.0%; both the values of
Vo/V 4 and of p show that the corresponding test cases
were rather stringent tests of the ability of the nu-

merical method to handle solutions with hyperbolic:

subdomains.
The errors in this table do not exceed 5.8%, for the
rms error. Max errors are naturally higher, but still less
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than 10.9%, in the most extreme cases. This is a con-
siderable reduction from the error in the initial guess,
which was 20%, in the max norm and ranged up to 21%,
in the rms norm. )

We notice from this table that the magnitude of the
error in the initial guess does not seem to affect sig-
nificantly the results: errors for s=s, (right sub-
columns) are only slightly larger than those for s=s,
(left subcolumns). However, some preliminary experi-
ments in which a geostrophic initial guess was used
yielded much smaller errors in the computed solution,
ie., a gain in accuracy by a factor up to 2. This might
be due simply to the smoothness of the geostrophic
guess compared to the randomly perturbed initial
guesses. We intend to study this matter further.

Table 2 concentrates on a comparison of numerical
results with the two mesh sizes, corresponding to M =25
and M =50. Velocities of solutions tabulated here
range up to 48 m s, which is still very high, divergences
again to 5X10~% s7, ratios Vo/V, to 1.44 (for V(=48
m s}, V,=33.42 m s7!), which is even higher than in
Table 1, and the extent of hyperbolic subdomains to
£=29.3%,. Errors are considerably smaller than in
Table 1, and they are much smaller for M =50 than
for M =25. Typically for M =25 the rms error is about
1-39, and the max error is 4-79,. For M =50 the rms
error is typically 0.3-1.7%, and the max error is 1.8
2.6%. The mesh sizes are still too large to conclude on
the exact order of accuracy of the method; the results

TABLE 2. Results for the numerical solution of System (11), comparing computations with two different grid sizes. The column head-
ings and contents are the same as in Table 1. The subcolumns headed 25 refer to M =25, or a 2525 grid, with grid size A=240 km;
the heading 50 refers to M =350, or a 50X 50 grid, with A=120 km. A marked improvement in accuracy obtains with grid refinement,

without an increase in the required number of iterations.

[
Vo (X108 ()(7105 Vi » N L2()(%] L:0)[%] Aulm s71] Av[m s71] L:@) (%] L) %]
(ms) s s71) (ms™)y (%) 25 50 25 50 25 50 25 50 25 50 25 50 25 S50
48 0 0 47.75 7.84 12 11 3.67 '1.38 3.71 179 3.00 0.94 2.86 1.25 3.67 1.52 6.96 2.23
48 2 0 47.75 7.84 13 11 2.08 0.79 2.06 1.00° 2.91 0.91 2.89 1.23 3.66 1.50 6.94 2.20
48 § 1 42.97 12.64 18 12 0.80 0.30 1.20 0.56 2.75 1.07 294 1.34 3.60 1.41 6.80 2.03
48 5 3 33.42  29.28 35 0.74 2.51 4.06 4.21 3.53 - 71.57
47 0 0 47.75 0.00 18" 12 3.49 133 3.83 173 2.76 0.89 2,66 1.16 3.53 1.48 6.62 2.17
47 2 0 47.75 0.00 18 12 1.95 0.75 1.94 0,95 2.68 0.86 2,69 1.14 3.53 1.47 6.61 2.14
47 5 1 42.97 12.64 17 12 0.76 0.29 1.14 0.54 2.56 0.89 2,77 1.24 3.53 1.40 6.54 1.98
47 5 .3 33.42 2096 24 0.65 2.25 3.21 3.39 3.64 7.04
46 0 0 47.75 0.00 19 12 3.25 131 3.29 1.72 2.51 0.87 2.42 112 3.33 147 6.20 2.12
46 2 0 47.75 0.00 18 12 1.83 0.73 1.82 0,93 2.47 0.84 2.50 111 '3.40 1.45 6.30 2.09
46 5 1 4297 12.64 17 12 0.72 0.28 1.07 0.52 2.39 0.86 2.59 1.16 3.42 1.39 6.27 1.94
46 5 3 33.42  20.96 21 0.60 2.12 2.89 3.04 3.48 6.67
44 0 [ 47.75 0.00 19 12 2,96 1.28 2.99 1,69 2,14 0.84 2.09 1.65 3.09 1.45 5.53 2.03
44 2 0 47,75 0.00 19 12 1.58 0.69 1.57 0.88 2.09 0.81 2.13 t1.04 3.10 1.43 5.64 2.00
- 44 5 1 42,97 4.32 18 12 0.62 0.28 0.93 0.49 2.08 0:80 2.24 1.02 3.15 1.37 5.70 1.87
44 5 3 33.42 20.96 16 0.53 1.91 2.45 2.61 3.35 6.12
40 ] 0 47.75 0.00 19 12 2.50 1.24 2.52 1.64 1.65 0.77 1.56 0.93 2.71 1.40 4.72 1.88
40 2 0 47.75 0.00 19 12 1.24 0.62 1.24 0.80 1.60 0.74 1.60 0.93 2.72 139 4.74 1.86
40 5 1 42.97 0.00 18 12 0.49 0.23 0.73 0.44 1.63 0.72 1.73  0.90 2,79 1.34 4.87 174
40 5 3 33.42 2096 18 12 0.41 0.18 1.50 ' 0.88 1.86 0.76 1.98 1.14 2.94 1.34 5.13  1.77
36 0 0 47,75 0.00 19 12 2.16 1.21 2.18 1.60 1.27 . 0.70 1.18 0.83 2.41 1.37 4.04 175
36 2 0 47,75 0.00 19 12 0.99 0.56 0.99 0.72 1.24 0.68 1.22 0.82 2.42 1.36 4,07 1.74
36 5 1 42.97 0.0C 18 11 0.39 0.21 0.59 0.40 1.28 0.70 1.3¢ 0.84 2.51 1.33 4.23 1.68
36 5 3 33.42 12.64 18 11 0.32 ° 0.16 1.20 0.78 1.45 0.73 1.52 0.88 2.62 1.33 4.38 1.73
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FIG. 4. The error in 9 for the solution plotted in Fig. 1. The maximum error is about
5 m s7, the rms error is about half of that, or 2.8 m s71; these have to be compared
with a maximum velocity of Vo=>54 m s™1. Errors are largest near the intersection of
the bands of hyperbolicity and decrease rapidly away from these intersections. The
error in the interior of the elliptic subdomains is practically zero.

seem to suggest that it is indeed second-order accurate,
as one might be led to expect from the discretization
chosen.

We notice that for M =350 the numerical iteration
did not converge in some cases in which the computa-
tion with M =25 produced convergence. This phenome-
non was observed also when initial guesses with s=s,
and s=s3 were used on the finer grid. Some cases with
larger initial errors failed to converge even on the
coarser grid, while convergence was obtained when
s=51. Work on eliminating these difficulties is in
progress.

The number of iterations N never exceeds 36, and
is typically 10-20 in all reasonable cases, with V, and
& not too large. This compares quite favorably with

updating methods. Indeed, one iteration step of the
present method for (11) requires about the same number
of operations as a time step in the numerical integration
of the prognostic system (1). Time steps of not more
than 5-10 min can be taken for mesh sizes comparable
to the ones we used when integrating (1). About 300
time steps are thus required for dynamic initialization
by updating of (1) under the most favorable circum-
stances; as noted already in Section 1, the results for
an updating process of this duration are still not satis-
factory. On the other hand, the error in our results can
be reduced even further by using a more stringent con-
vergence criterion of =102 instead of »=10"2 as re-
ported here; this will only cause an increase of N to
about 100 (Ghil and Shkoller, 1976).
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F1c. 5. The streamfunction y for the solutions plotted in Fig. 1 and in Fig. 2. The
remarks made about the visual accuracy of « and v apply to ¢ as well. This indicates
that the method proposed here is also quite appropriate for solving the classical balance

equation in mixed-type cases.

We notice in both tables that the errors in ¢ are
never much larger than and mostly quite comparable
to those in # and v, and this in spite of the fact that
(30) was not solved in the most accurate manner pos-
sible. One could for instance evaluate the right-hand
side { more accurately, and use (31) or other, faster
methods (cf. Ghil and Balgovind, 1977) on a much

finer grid. Even with the present solution

given by (23’) and (31), we conclude that the solution
of system (11) with d=0, followed by the solution of
Eq. (30), is an efficient way of solving the classical
balance equation in mixed-type cases (also compare

Ghil and Shkoller, 1976).
We further illustrate our results in Figs.

darker areas represent hyperbolic subdomains. Figs. 1-3

give plots of # and v for three selected solutions: Fig. 1
gives the plots of the numerical solution corresponding
to Vo=54 m s!, A\=u=0; Fig. 2 gives the plots for
Vo=54 m s, A=3X10"% 51, x=2X10"% s71; and
Fig. 3 gives the plots for V=47 m 57!, A=4X10"5 s,
u=1X10"% 571, Figs. 1a, 2a and 3a show «, while Figs.
1b, 2b and 3b show the corresponding ». All the plotted
solutions were obtained with the coarser mesh, i.e.,
M =25. We notice that the plotted solutions have some
of the highest numerical errors in the tables and strong
hyperbolicity, while two of them also have very large
divergence. In spite of all this the plots are visually
almost indistinguishable from those of the exact solu-
tions; this can be seen here from the smoothness and
symmetry of the plot. Including plots of the exact solu-

methods,

1-5. The
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tions did not seem to serve a useful purpose, since they
would only duplicate the ones of the numerical solutions.
Fig. 4 gives an actual error plot, at a suitably magni-
fied scale. It indicates that in this case, as well as in all
the others, the errors were mostly concentrated in the
areas where more than one elliptic and one hyperbolic
region were in close vicinity of one another, or, in
~ other words, near the intersection of lines of para-
bolicity. This can be expected from the mathematical
theory of mixed-type problems (Bitsadze, 1964, Chap.
4). The errors in the interior of elliptic subdomains
were entirely negligible in all cases. It might be worth-
while to notice at this point that the structure of the
subdomains of hyperbolicity in the cases we present,
as well as the extent of these subdomains, could have
been expected to present greater difficulties than those
encountered in the numerical solution of mixed-type
problems currently solved in transonic gas' dynamics
(e.g., Jameson, 1976). :

Fig. 5 shows the numerical solution for ¢, in the case
V=54 m s71. Notice that ¢ is independent of X and g,
and its computation makes sense even when d><0. The
same comments as for Figs. 1~-3 apply with regard to
the visual accuracy of y.

This concludes the presentation of our numerical
results. It seems appropriate to comment at this point
on some directions of development in the -numerical
techniques, while keeping comments of a more general
nature for the last section.

We expect that results can be further improved by
one or more of the following meodifications of the
method: the use of smooth, perhaps geostrophic initial
guesses; using the results of the computation on a
coarse mesh as an initial guess for the iteration on a
finer mesh (Brandt, 1977); refining the continuity
method idea, for instance by other choices of the
sequence f; and exploring different ideas to acceler-
ate convergence of the iteration, so that higher accuracy

can be obtained in the same computer time. The last

point can certainly be implemented with ease in the
computation of ¥ from # and v. Studies on the con-
tribution of discretization and roundoff to the total
errors in # and v showed that round-off errors are a
large part of the total error (Ghil and Shkoller, 1976).
This clearly indicates that an improvement in the
method for solving the discrete system (22) will con-
siderably increase the accuracy of the numerical solu-
tion Va of (11).

After perfecting the numerical method, it will be
necessary to study the effect that errors in the boundary
data for # and v and errors in the geopotential measure-
ments entering into the right-hand side of system (4)
have on the accuracy of the numerical solution. Such
a study has been carried out analytically for a linearized
version of (4) in Ghil (1975b). After gaining some nu-
merical experience, similar theoretical estimates could
perhaps be given for the effect of errors in the data of

. (4) on its solution.
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5. Concluding remarks

We have derived a diagnostic balance system com-
patible with the nonlinear shallow-fluid equations. A
diagnostic system compatible ‘with a baroclinic prog-
nostic model governed by nonlinear primitive equa-
tions was derived in Ghil (1975b).

These diagnostic systems give the horizontal velocity
components #, v in terms of the mass field and of its
first and second time derivatives. They are derived
from the corresponding prognostic systems without re-
course to any physical assumptions in addition to those
used in formulating the prognostic systems themselves.

Equipped with the information provided by these
diagnostic systems, we now wish to address the follow-
ing important question: does knowledge of the mass
field and of its time history fully determine the velocity
field in an atmosphere governed by nonlinear primitive
equations? The form of our diagnostic systems allows
us first to define the knowledge required about the
time history of the mass field precisely, as knowledge
of the first two time derivatives of the mass field.
Second, the exact derivation of the diagnostic systems
from the prognostic ones allows us to answer the
question in the affirmative: yes, the mass field and its
first two time derivatives do determine the wind field,
in the precise sense we defined, and in all generality.
We only expect, however, the diagnostic systems we
derive to be of practical use in mid-latitudes where
measurements of the mass field are sufficiently accurate.

Considering further the question of the practicality
of the present approach of initialization by compatible
balancing, we notice first that the numerical solution .
of our barotropic diagnostic system was shown to be
more efficient in terms of computing time than up-
dating the corresponding prognostic system; it was also
shown that the results of our method are sufficiently
accurate. The numerical difficulties connected with the
nonlinear mixed elliptic-hyperbolic type of the diag-
nostic system have been surmounted in cases in which
the hyperbolic subdomains covered up to a third of the
entire computational domain. Such cases seem highly
unlikely in actual synoptic situations; therefore the
numerical method we present should be useful for all
the synoptic situations likely to be encountered in
practical applications of the diagnostic system pre-
sented here. The numerical method formulated here or
modified forms of it could also be tried for other equa-
tions of mixed type occurring in dynamic meteorology,
such as the w equation; the ellipticity of the latter
equation depends on the sign of the vertical static
stability.

We have given an interpretation of the ellipticity
condition for our diagnostic system and, by implication,
for the classical balance equation, in terms of the differ-
ence of the square of absolute vorticity and the square
of total deformation. This interpretation could serve
in the study of synoptic diagnoses. It could also help
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to elucidate the reason for the rarity and limited extent
of hyperbolic areas in real synoptic situations.

We turn now to questions related to the implementa-
tion of initialization by compatible balancing in an op-
erational context. First we notice that the diagnostic
system used would have to be compatible in finite
difference form, rather than in differential form, with
the prognostic system of the numerical weather pre-
diction (NWP) model. This is not so difficult to achieve
(Ghil, 1975b). Certainly more work needs to be done
on the numerical solution of finite-difference diagnostic
systems compatible in this sense with baroclinic prog-
nostic systems of primitive equations.

Second, the application of this approach would seem
most useful in limited areas of sparse velocity data,
such as the oceans. Boundary data for the velocity are
available along the continental coasts from conven-
tional observing stations; along a southern tropical
boundary in the North Pacific, say, velocity data can
be obtained from cloud tracking by geostationary
satellites (Bengtsson, 1975).

It remains to be seen how accurately the mass field
itself and its first and second time differences can be
determined from temperature data based on radiance
measurements from polar orbiting satellites. Methods
for the four-dimensional (4-D) assimilation of satellite-
derived temperatures obtained during a period of 12
to 24 h preceding initialization time are continuously
being refined ; we expect these methods to produce in
the near future sufficiently accurate fields of geopoten-
tial heights and of time differences of these heights.
The 4-D analysis should provide adequate filtering of
observational errors. Statistical and variational methods
for 4-D analysis are currently being developed with this
objective in mind (Ghil ¢t al., 1976, Ghil and Mosebach,
1977).

A balanced diagnostic system compatible with the
prognostic system of the NWP model would seem
ideally suited as a nonholonomic constraint in a varia-
tional formulation (cf. Stephens, 1970). In such a
formulation the time derivatives of the mass field
would be minimized, along with the difference between
initial state and observations.

In any case, the use of compatible balancing appears
to hold some promise that the effort spent in determin-
ing an initial state which is as accurate as possible will
not be wasted by the prognostic model’s ‘“‘immune
reaction” to the initial state thus determined. Initializa-
tion by compatible balancing seems feasible and should
prevent initialization shock and the rapid deterioration
of model forecasts through it.
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